397 research outputs found

    Reduced Hypoxia Risk in a Systemic Sclerosis Patient with Interstitial Lung Disease after Long-Term Pulmonary Rehabilitation

    Get PDF
    Pulmonary rehabilitation is effective for improving exercise capacity in patients with interstitial lung disease (ILD), and most programs last about 8 weeks. A 43-year-old male patient with systemic sclerosis and oxygen saturation (SpO2) declining because of severe ILD was hospitalized for treatment of chronic skin ulcers. During admission, he completed a 27-week walking exercise program with SpO2 monitoring. Consequently, continuous walking distance without severe hypoxia (SpO2 > 90%) increased from 60 m to 300 m after the program, although his six-minute walking distance remained the same. This suggests that walking exercise for several months may reduce the risk of hypoxia in patients with ILD, even though exercise capacity does not improve

    Monetary Policy Rules and Directions of Causality: a Test for the Euro Area

    Get PDF
    Using a VAR model in first differences with quarterly data for the euro zone, the study aims to ascertain whether decisions on monetary policy can be interpreted in terms of a “monetary policy rule” with specific reference to the so-called nominal GDP targeting rule (Hall and Mankiw, 1994; McCallum, 1988; Woodford, 2012). The results obtained indicate a causal relation proceeding from deviation between the growth rates of nominal gross domestic product (GDP) and target GDP to variation in the three-month market interest rate. The same analyses do not, however, appear to confirm the existence of a significant inverse causal relation from variation in the market interest rate to deviation between the nominal and target GDP growth rates. Similar results were obtained on replacing the market interest rate with the European Central Bank refinancing interest rate. This confirmation of only one of the two directions of causality does not support an interpretation of monetary policy based on the nominal GDP targeting rule and gives rise to doubt in more general terms as to the applicability of the Taylor rule and all the conventional rules of monetary policy to the case in question. The results appear instead to be more in line with other possible approaches, such as those based on post Keynesian analyses of monetary theory and policy and more specifically the so-called solvency rule (Brancaccio and Fontana, 2013, 2015). These lines of research challenge the simplistic argument that the scope of monetary policy consists in the stabilization of inflation, real GDP, or nominal income around a “natural equilibrium” level. Rather, they suggest that central banks actually follow a more complex purpose, which is the political regulation of the financial system with particular reference to the relations between creditors and debtors and the related solvency of economic units

    Exploring nanoscale structure in perovskite precursor solutions using neutron and light scattering

    Get PDF
    Tailoring the solution chemistry of metal halide perovskites requires a detailed understanding of precursor aggregation and coordination. In this work, we use various scattering techniques, including dynamic light scattering (DLS), small angle neutron scattering (SANS), and spin–echo SANS (SESANS) to probe the nanostructures from 1 nm to 10 μm within two different lead-halide perovskite solution inks (MAPbI3 and a triple-cation mixed-halide perovskite). We find that DLS can misrepresent the size distribution of the colloidal dispersion and use SANS/SESANS to confirm that these perovskite solutions are mostly comprised of 1–2 nm-sized particles. We further conclude that if there are larger colloids present, their concentration must be <0.005% of the total dispersion volume. With SANS, we apply a simple fitting model for two component microemulsions (Teubner–Strey), demonstrating this as a potential method to investigate the structure, chemical composition, and colloidal stability of perovskite solutions, and we here show that MAPbI3 solutions age more drastically than triple cation solutions

    Analysis of Peculiarities of the Stellar Velocity Field in the Solar Neighborhood

    Full text link
    Based on a new version of the Hipparcos catalogue and an updated Geneva-Copenhagen survey of F and G dwarfs, we analyze the space velocity field of about 17000 single stars in the solar neighborhood. The main known clumps, streams, and branches (Pleiades, Hyades, Sirius, Coma Berenices, Hercules, Wolf 630-alpha Ceti, and Arcturus) have been identified using various approaches. The evolution of the space velocity field for F and G dwarfs has been traced as a function of the stellar age. We have managed to confirm the existence of the recently discovered KFR08 stream. We have found 19 Hipparcos stars, candidates for membership in the KFR08 stream, and obtained an isochrone age estimate for the stream, 13 Gyr. The mean stellar ages of the Wolf 630-alpha Ceti and Hercules streams are shown to be comparable, 4--6 Gyr. No significant differences in the metallicities of stars belonging to these streams have been found. This is an argument for the hypothesis that these streams owe their origin to a common mechanism.Comment: 23 pages, 9 figure

    Measurement of the Proton and Deuteron Spin Structure Functions g2 and Asymmetry A2

    Full text link
    We have measured the spin structure functions g2p and g2d and the virtual photon asymmetries A2p and A2d over the kinematic range 0.02 < x < 0.8 and 1.0 < Q^2 < 30(GeV/c)^2 by scattering 38.8 GeV longitudinally polarized electrons from transversely polarized NH3 and 6LiD targets.The absolute value of A2 is significantly smaller than the sqrt{R} positivity limit over the measured range, while g2 is consistent with the twist-2 Wandzura-Wilczek calculation. We obtain results for the twist-3 reduced matrix elements d2p, d2d and d2n. The Burkhardt-Cottingham sum rule integral - int(g2(x)dx) is reported for the range 0.02 < x < 0.8.Comment: 12 pages, 4 figures, 1 tabl

    Covert action failure and fiasco construction: William Hague’s 2011 Libyan venture

    Get PDF
    In 2011 William Hague, then British Foreign Secretary, authorized a Special Forces team to enter Libya and attempt to contact rebels opposed to Muammar Gaddafi in the unfolding civil war. However, its members were detained by the rebels, questioned and ejected from the country. This article puts the literature on public policy failures into dialogue with that on covert action as a tool of foreign policy. It asks: why did this not develop into a fully-fledged policy fiasco when journalists and politicians alike judged it to have been a major error of judgement on Hague’s part? Using narrative analysis of the contemporary reporting of this incident, we argue that the government – possessing the advantage of information asymmetry accruing from operational secrecy – was ultimately able to win the battle of narratives in a frame contestation process. The study of information asymmetry can enhance the recently revivified research into foreign policy failures

    New Insights into X-ray Binaries

    Full text link
    X-ray binaries are excellent laboratories to study collapsed objects. On the one hand, transient X-ray binaries contain the best examples of stellar-mass black holes while persistent X-ray binaries mostly harbour accreting neutron stars. The determination of stellar masses in persistent X-ray binaries is usually hampered by the overwhelming luminosity of the X-ray heated accretion disc. However, the discovery of high-excitation emission lines from the irradiated companion star has opened new routes in the study of compact objects. This paper presents novel techniques which exploits these irradiated lines and summarises the dynamical masses obtained for the two populations of collapsed stars: neutron stars and black holes.Comment: 12 pages, 5 figures, 2 tables, Invited review to plenary session in "Highlights of Spanish Astrophysics V", Proceedings of the VIII Scientific Meeting of the Spanish Astronomical Society (SEA) held in Santander, 7-11 July, 2008. Edited by J. Gorgas, L. J. Goicoechea, J. I. Gonzalez-Serrano, J. M. Dieg

    Time-integrated luminosity recorded by the BABAR detector at the PEP-II e+e- collider

    Get PDF
    This article is the Preprint version of the final published artcile which can be accessed at the link below.We describe a measurement of the time-integrated luminosity of the data collected by the BABAR experiment at the PEP-II asymmetric-energy e+e- collider at the ϒ(4S), ϒ(3S), and ϒ(2S) resonances and in a continuum region below each resonance. We measure the time-integrated luminosity by counting e+e-→e+e- and (for the ϒ(4S) only) e+e-→μ+μ- candidate events, allowing additional photons in the final state. We use data-corrected simulation to determine the cross-sections and reconstruction efficiencies for these processes, as well as the major backgrounds. Due to the large cross-sections of e+e-→e+e- and e+e-→μ+μ-, the statistical uncertainties of the measurement are substantially smaller than the systematic uncertainties. The dominant systematic uncertainties are due to observed differences between data and simulation, as well as uncertainties on the cross-sections. For data collected on the ϒ(3S) and ϒ(2S) resonances, an additional uncertainty arises due to ϒ→e+e-X background. For data collected off the ϒ resonances, we estimate an additional uncertainty due to time dependent efficiency variations, which can affect the short off-resonance runs. The relative uncertainties on the luminosities of the on-resonance (off-resonance) samples are 0.43% (0.43%) for the ϒ(4S), 0.58% (0.72%) for the ϒ(3S), and 0.68% (0.88%) for the ϒ(2S).This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat à l’Energie Atomique and Institut National de Physique Nucléaire et de Physiquedes Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e Innovación (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A.P. Sloan Foundation (USA)

    Origins of the Ambient Solar Wind: Implications for Space Weather

    Full text link
    The Sun's outer atmosphere is heated to temperatures of millions of degrees, and solar plasma flows out into interplanetary space at supersonic speeds. This paper reviews our current understanding of these interrelated problems: coronal heating and the acceleration of the ambient solar wind. We also discuss where the community stands in its ability to forecast how variations in the solar wind (i.e., fast and slow wind streams) impact the Earth. Although the last few decades have seen significant progress in observations and modeling, we still do not have a complete understanding of the relevant physical processes, nor do we have a quantitatively precise census of which coronal structures contribute to specific types of solar wind. Fast streams are known to be connected to the central regions of large coronal holes. Slow streams, however, appear to come from a wide range of sources, including streamers, pseudostreamers, coronal loops, active regions, and coronal hole boundaries. Complicating our understanding even more is the fact that processes such as turbulence, stream-stream interactions, and Coulomb collisions can make it difficult to unambiguously map a parcel measured at 1 AU back down to its coronal source. We also review recent progress -- in theoretical modeling, observational data analysis, and forecasting techniques that sit at the interface between data and theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue connected with a 2016 ISSI workshop on "The Scientific Foundations of Space Weather." 44 pages, 9 figure
    corecore